Fraud Blocker Skip to main content

Enzyme Collection (page 4)

Enzymes: The Molecular Architects of Life DNA transcription, molecular model: they are the key players in the intricate process of DNA transcription

Background imageEnzyme Collection: DNA transcription, molecular model F006 / 9584

DNA transcription, molecular model F006 / 9584
DNA transcription. Molecular model of the enzyme RNA polymerase II synthesising a mRNA (messenger ribonucleic acid) strand from a DNA (deoxyribonucleic acid) template

Background imageEnzyme Collection: Dynamin enzyme, molecular model F006 / 9583

Dynamin enzyme, molecular model F006 / 9583
Dynamin enzyme. Molecular model of the pleckstrin homology (PH) domain of the dynamin enzyme. Domains are structural regions of enzymes that are often actively involved in biological processes

Background imageEnzyme Collection: Double-stranded RNA-ribonuclease III F006 / 9585

Double-stranded RNA-ribonuclease III F006 / 9585
Double-stranded RNA-ribonuclease III. Molecular model of ribonuclease III (RNase III, D44N, pink and green) complexed with a double-stranded RNA (ribonucleic acid) strand (red and blue)

Background imageEnzyme Collection: Bioluminescent enzyme molecule F006 / 9579

Bioluminescent enzyme molecule F006 / 9579
Bioluminescent enzyme. Molecular model of the bioluminescent enzyme luciferase from the Japanese aquatic firefly (Luciola cruciata) complexed with an intermediate protein

Background imageEnzyme Collection: Fatty acid synthase molecule F006 / 9575

Fatty acid synthase molecule F006 / 9575
Fatty acid synthase (FAS), molecular model. FAS is a multi-enzyme that plays a key role in the synthesis of fatty acids (lipids) in the human body. It is not a single enzyme but a whole enzyme system

Background imageEnzyme Collection: Chymotrypsin inhibitor 2 molecule F006 / 9578

Chymotrypsin inhibitor 2 molecule F006 / 9578
Chymotrypsin inhibitor 2, molecular model. This enzyme is a serine protease inhibitor (serpin) found in barley (Hordeum vulgare) seeds

Background imageEnzyme Collection: Citrate synthase molecule F006 / 9573

Citrate synthase molecule F006 / 9573
Citrate synthase, molecular model. This enzyme is involved in the first step of the citric acid (or Krebs) cycle, the process by which mitochondria convert glucose to energy

Background imageEnzyme Collection: Family 84 glycoside hydrolase molecule F006 / 9574

Family 84 glycoside hydrolase molecule F006 / 9574
Family 84 glycoside hydrolase, molecular model. Glycoside hydrolases are enzymes that hydrolase the glycosidic bond between two or more carbohydrates

Background imageEnzyme Collection: Retinal-producing oxygenase enzyme F006 / 9570

Retinal-producing oxygenase enzyme F006 / 9570
Retinal-producing oxygenase enzyme, molecular model. This enzyme plays a role in the production and metabolism of retinal and other apocarotenoids. Retinal is the chemical basis of vision in animals

Background imageEnzyme Collection: Flu virus surface protein molecule F006 / 9566

Flu virus surface protein molecule F006 / 9566
Flu virus surface protein molecule. Molecular model of the neuraminidase glycoprotein enzyme found on the surface of the influenza A (flu) virus

Background imageEnzyme Collection: Iron-regulatory protein, molecular model F006 / 9565

Iron-regulatory protein, molecular model F006 / 9565
Iron-regulatory protein. Molecular model of iron regulatory protein 1 (IRP1). Depending on the conformation of IRP1, it can acts as either a regulator of mRNA (messenger RNA) or an enzyme

Background imageEnzyme Collection: Bacteriophage DNA recombination F006 / 9554

Bacteriophage DNA recombination F006 / 9554
Bacteriophage DNA recombination. Molecular model showing DNA manipulation and recombination taking place at a Holliday junction with a bacteriophage enzyme

Background imageEnzyme Collection: ATP-dependent protease molecule F006 / 9552

ATP-dependent protease molecule F006 / 9552
ATP-dependent protease. Molecular model of the bacterial enzyme HsIUV protease. Proteases are enzymes that break down proteins. HsIUV is expressed in response to cellular stress

Background imageEnzyme Collection: NADP-dependent alcohol dehydrogenase F006 / 9549

NADP-dependent alcohol dehydrogenase F006 / 9549
NADP-dependent alcohol dehydrogenase, molecular model. Alcohol dehydrogenase (ADH) is an enzyme that facilitates the break-down of alcohols in the body, which could otherwise be toxic

Background imageEnzyme Collection: Plant hormone regulator, molecular model F006 / 9545

Plant hormone regulator, molecular model F006 / 9545
Plant hormone regulator. Molecular model of Ia-amidohydrolase from thale cress (Arabidopsis thaliana). This enzyme acts to release the plant hormone indoe-3-acetic acid from its storage form

Background imageEnzyme Collection: Hydroxysteroid dehydrogenase molecule F006 / 9543

Hydroxysteroid dehydrogenase molecule F006 / 9543
Hydroxysteroid dehydrogenase. Molecular model of the human type 5 hydroxysteroid dehydrogenase enzyme bound to a molecule of the steroid drug androstene

Background imageEnzyme Collection: Pyruvate dehydrogenase enzyme molecule F006 / 9538

Pyruvate dehydrogenase enzyme molecule F006 / 9538
Pyruvate dehydrogenase (E1), molecular model. This enzyme converts pyruvate to acetyl-CoA for use in the citric acid (or Krebs) cycle

Background imageEnzyme Collection: Elongation factor Tu and tRNA F006 / 9522

Elongation factor Tu and tRNA F006 / 9522
Elongation factor Tu bound to tRNA (transfer ribonucleic acid), molecular model. This enzyme is involved in the elongation of polypeptide chains during translation

Background imageEnzyme Collection: Bacteriophage ATPase molecule F006 / 9536

Bacteriophage ATPase molecule F006 / 9536
Bacteriophage ATPase. Molecular model of an ATP synthase (ATPase) molecule from the phi 12 bacteriophage. ATPase is an important enzyme that provides energy for cells through the synthesis of

Background imageEnzyme Collection: Bacteriophage restriction enzyme F006 / 9531

Bacteriophage restriction enzyme F006 / 9531
Bacteriophage restriction enzyme. Molecular model of the restriction enzyme endonuclease V (yellow) from the bacteriophage T4 complexed with DNA (deoxyribonucleic acid, red and blue)

Background imageEnzyme Collection: Squalene-hopene cyclase molecule F006 / 9529

Squalene-hopene cyclase molecule F006 / 9529
Squalene-hopene cyclase, molecular model. This bacterial enzyme catalyses the cyclization of squalene to hopene

Background imageEnzyme Collection: Nitric oxide synthase molecule F006 / 9521

Nitric oxide synthase molecule F006 / 9521
Nitric oxide synthase, molecular model. This enzyme catalyses the production of nitric oxide from L-arginine. Nitric oxide is involved in cellular signalling

Background imageEnzyme Collection: Carbonic anhydrase molecule F006 / 9518

Carbonic anhydrase molecule F006 / 9518
Carbonic anhydrase, molecular model. This enzyme catalyses the reversible hydration of carbon dioxide

Background imageEnzyme Collection: Reverse transcriptase and inhibitor F006 / 9519

Reverse transcriptase and inhibitor F006 / 9519
Reverse transcriptase and inhibitor. Molecular model of HIV reverse transcriptase complexed with a non-nucleoside reverse transcriptase inhibitor drug

Background imageEnzyme Collection: Trypsinogen molecule with inhibitor F006 / 9517

Trypsinogen molecule with inhibitor F006 / 9517
Trypsinogen molecule. Molecular model of trypsinogen, the precursor to the digestive protease enzyme trypsin, complexed with an inhibitor

Background imageEnzyme Collection: DNA polymerase with DNA F006 / 9512

DNA polymerase with DNA F006 / 9512
DNA polymerase with DNA. Molecular model of DNA polymerase (purple) complexed with a molecule of DNA (deoxyribonucleic acid, pink and blue)

Background imageEnzyme Collection: DNA helicase molecule F006 / 9509

DNA helicase molecule F006 / 9509
DNA helicase. Molecular model of a helicase molecule from the SV40 virus. Helicases are enzymes that separate the two strands of the DNA double helix

Background imageEnzyme Collection: Simian virus SV40 large T antigen F006 / 9513

Simian virus SV40 large T antigen F006 / 9513
Simian virus (SV40) large T antigen, molecular model. This antigen is from the simian vacuolating virus 40 (SV40). Large T antigens play a role in regulating the viral life cycle of

Background imageEnzyme Collection: Calcium ATPase ion pump F006 / 9507

Calcium ATPase ion pump F006 / 9507
Calcium ATPase ion pump, molecular model. This enzyme is found in muscle cell membranes, where it pumps calcium in and out of muscle cells and controls muscle contractions

Background imageEnzyme Collection: Scavenger mRNA-decapping enzyme F006 / 9505

Scavenger mRNA-decapping enzyme F006 / 9505
Scavenger mRNA-decapping enzyme, molecular model. This enzyme hydrolyses the cap that is left after 3 to 5 mRNA degradation

Background imageEnzyme Collection: Yeast enzyme, molecular model F006 / 9498

Yeast enzyme, molecular model F006 / 9498
Yeast enzyme. Molecular model of an enzyme from bakers yeast (Saccharomyces cerevisiae). This is the 20S proteasome. A proteasome is a complex type of proteinase (protein-digesting enzyme)

Background imageEnzyme Collection: Photosystem II molecule F006 / 9500

Photosystem II molecule F006 / 9500
Photosystem II. Molecular model of the photosystem II complex. Photosystems are protein complexes involved in photosynthesis

Background imageEnzyme Collection: Photosystem II molecule F006 / 9497

Photosystem II molecule F006 / 9497
Photosystem II. Molecular model of the photosystem II complex. Photosystems are protein complexes involved in photosynthesis

Background imageEnzyme Collection: HIV reverse transcription enzyme F006 / 9494

HIV reverse transcription enzyme F006 / 9494
HIV reverse transcription enzyme. Molecular model of the reverse transcriptase enzyme (blue and green) found in HIV (the human immunodeficiency virus)

Background imageEnzyme Collection: EcoRV restriction enzyme molecule F006 / 9496

EcoRV restriction enzyme molecule F006 / 9496
EcoRV restriction enzyme. Molecular model of the type II restriction enzyme EcoRV (pink and yellow) bound to a cleaved section of DNA (deoxyribonucleic acid, red and blue)

Background imageEnzyme Collection: Rubisco enzyme molecule F006 / 9491

Rubisco enzyme molecule F006 / 9491
Rubisco. Molecular model of the enzyme rubisco (ribulose bisphosphate carboxylase oxygenase). Rubisco is thought to be the most abundant and important protein found in nature

Background imageEnzyme Collection: Hammerhead ribozyme molecule F006 / 9492

Hammerhead ribozyme molecule F006 / 9492
Hammerhead ribozyme, molecular model. Ribozymes are RNA (ribonucleic acid) molecules that catalyse certain biochemical reactions

Background imageEnzyme Collection: Murine p97 protein molecule F006 / 9487

Murine p97 protein molecule F006 / 9487
Murine p97 protein, molecular model. This mouse enzyme, is involved in membrane fusion and ubiquitin-dependent protein degradation

Background imageEnzyme Collection: Uricase enzyme, molecular model F006 / 9485

Uricase enzyme, molecular model F006 / 9485
Uricase, molecular model. This enzyme, also known as urate oxidase, catalyses the last stage of purine catabolism. It is absent from humans

Background imageEnzyme Collection: Human catalase, molecular model F006 / 9478

Human catalase, molecular model F006 / 9478
Human catalase, molecular model. This enzyme catalyses the break down of hydrogen peroxide to water and oxygen. Hydrogen peroxide is a highly toxic byproduct of a number of normal cellular processes

Background imageEnzyme Collection: Endonuclease IV molecule F006 / 9480

Endonuclease IV molecule F006 / 9480
Endonuclease IV molecule. Molecular model of the endonuclease IV restriction enzyme EcoRV (beige) bound to a cleaved section of DNA (deoxyribonucleic acid, blue, red and green)

Background imageEnzyme Collection: RNA polymerase molecule F006 / 9475

RNA polymerase molecule F006 / 9475
RNA polymerase. Molecular model of RNA polymerase (beige) transcribing a strand of mRNA (messenger ribonucleic acid, pink) from a DNA (deoxyribonucleic acid) template (red and blue)

Background imageEnzyme Collection: Cytochrome c oxidase and antibody F006 / 9474

Cytochrome c oxidase and antibody F006 / 9474
Cytochrome c oxidase. Molecular model of a cytochrome c oxidase enzyme complexed with an antibody. Cytochrome molecules perform oxidation and reduction reactions for electron transport

Background imageEnzyme Collection: Outer membrane phospholipase A molecule F006 / 9469

Outer membrane phospholipase A molecule F006 / 9469
Outer membrane phospholipase A. Molecular model of the integral membrane protein, outer membrane phospholipase A from the Escherichia coli bacterium

Background imageEnzyme Collection: Nickel-containing superoxide dismutase F006 / 9468

Nickel-containing superoxide dismutase F006 / 9468
Nickel-containing superoxide dismutase enzyme, molecular model. This enzyme scavenges and decomposes the potentially toxic first reduction product, superoxide, of aerobic respiration

Background imageEnzyme Collection: Lactose transporter protein molecule F006 / 9466

Lactose transporter protein molecule F006 / 9466
Lactose transporter protein. Molecular model of the transmembrane transport protein lactose permease bound with a lactose homolog

Background imageEnzyme Collection: Aspirin drug target molecule F006 / 9464

Aspirin drug target molecule F006 / 9464
Aspirin drug target. Molecular model of the enzyme prostaglandin H2 synthase (PGHS), the target of the anti-inflammatory drug aspirin

Background imageEnzyme Collection: Archaeon enzyme, molecular model F006 / 9459

Archaeon enzyme, molecular model F006 / 9459
Archaeon enzyme. Molecular model of an enzyme from Thermoplasma acidophilum. This is the 20S proteasome. A proteasome is a complex type of proteinase (protein-digesting enzyme)



All Professionally Made to Order for Quick Shipping

Enzymes: The Molecular Architects of Life DNA transcription, molecular model: they are the key players in the intricate process of DNA transcription, where they faithfully transcribe genetic information into RNA molecules. Metabolic enzyme, artwork: Metabolic enzymes act as catalysts in various biochemical reactions within our bodies, ensuring efficient metabolism and energy production. HIV reverse transcription enzyme: This remarkable enzyme allows the human immunodeficiency virus (HIV) to convert its RNA genome into DNA, enabling it to integrate with our own genetic material. Hepatitis C virus enzyme, molecular model: Understanding the structure and function of hepatitis C virus enzymes is crucial for developing effective treatments against this persistent viral infection. Anatomy of Organs Engraving: Enzymes play a vital role in maintaining organ health by facilitating essential processes like digestion, respiration, and hormone regulation throughout our body's intricate anatomy. Manganese superoxide dismutase enzyme F006 / 9423: This antioxidant enzyme protects cells from harmful free radicals by converting them into less damaging substances—a guardian against oxidative stress. Cytochrome b5 molecule C015 / 6696: As an electron carrier protein found in cell membranes, cytochrome b5 assists other enzymes in performing critical metabolic reactions involved in energy production and lipid metabolism. Glutamine synthetase enzyme: Essential for nitrogen metabolism, glutamine synthetase ensures that ammonia produced during cellular processes is safely converted into non-toxic compounds like amino acids or urea. RNA-editing enzyme, molecular model: These specialized enzymes modify RNA molecules after their synthesis—fine-tuning gene expression patterns and expanding the diversity of proteins encoded by our genes. ATPase molecule: ATPases are indispensable for cellular energy transfer; these enzymes hydrolyze adenosine triphosphate (ATP), releasing stored energy to power various cellular processes.