Fraud Blocker Skip to main content

Proteins Collection (page 12)

Proteins: The Building Blocks of Life From the intricate network of nerve and glial cells to the mesmerizing patterns seen under a light micrograph

Background imageProteins Collection: Glutaminyl-tRNA synthetase molecule

Glutaminyl-tRNA synthetase molecule
Glutaminyl-tRNA synthetase protein molecule. Molecular model showing bacterial glutaminyl-tRNA synthetase complexed with glutamine tRNA (transfer ribonucleic acid)

Background imageProteins Collection: Stem cell-derived nerve cells

Stem cell-derived nerve cells. Fluorescence light micrograph of neural (nerve) stem cells that have been derived from human embryonic stem cells (HESC)

Background imageProteins Collection: Bone morphogenetic protein complex

Bone morphogenetic protein complex, molecular model. Bone Morphogenetic Protein-7 (BMP-7, blue) in complex with the secreted antagonist Noggin (pink)

Background imageProteins Collection: Smooth endoplasmic reticulum, TEM

Smooth endoplasmic reticulum, TEM
Smooth endoplasmic reticulum. Transmission electron micrograph (TEM) showing smooth endoplasmic reticulum (ER, thin lines) inside a cell that is synthesising steroid hormones

Background imageProteins Collection: Light-harvesting protein complex

Light-harvesting protein complex, molecular model. Peripheral light-harvesting protein complex from the purple bacterium Rhodopseudomonas acidophila

Background imageProteins Collection: DNA nucleosome, molecular model C016 / 8549

DNA nucleosome, molecular model C016 / 8549
DNA nucleosome. Molecular model of a nucleosome, the fundamental repeating unit used to package DNA (deoxyribonucleic acid) inside cell nuclei

Background imageProteins Collection: Liver portal triad, light micrograph C016 / 8490

Liver portal triad, light micrograph C016 / 8490
Liver portal triad. Fluorescence deconvolution micrograph of a section through a portal triad in liver tissue, showing hepatocyte cells (red)

Background imageProteins Collection: Liver portal triad, light micrograph C016 / 8489

Liver portal triad, light micrograph C016 / 8489
Liver portal triad. Fluorescence deconvolution micrograph of a section through a portal triad in liver tissue, showing hepatocyte cells (red)

Background imageProteins Collection: Liver portal triad, light micrograph C016 / 8488

Liver portal triad, light micrograph C016 / 8488
Liver portal triad. Fluorescence deconvolution micrograph of a section through a portal triad in liver tissue, showing hepatocyte cells (red)

Background imageProteins Collection: Kidney tissue, fluorescence micrograph C016 / 8484

Kidney tissue, fluorescence micrograph C016 / 8484
Kidney tissue. Fluorescence deconvolution micrograph of a section through a kidney, showing glomeruli (green), cell nuclei (blue dots), and renal tubules (red, circular)

Background imageProteins Collection: Heart muscle, fluorescence micrograph C016 / 8483

Heart muscle, fluorescence micrograph C016 / 8483
Heart muscle. Fluorescence deconvolution micrograph of a section through heart tissue, showing the angular distribution of the myocardium (cardiac muscle) fibres (green)

Background imageProteins Collection: Heart muscle, fluorescence micrograph C016 / 8481

Heart muscle, fluorescence micrograph C016 / 8481
Heart muscle. Fluorescence deconvolution micrograph of a section through heart tissue, showing blood vessels (oval, centre-left and upper centre) running through the myocardium (cardiac muscle)

Background imageProteins Collection: Heart muscle, fluorescence micrograph C016 / 8478

Heart muscle, fluorescence micrograph C016 / 8478
Heart muscle. Fluorescence deconvolution micrograph of a section through heart tissue, showing a blood vessel (diagonal, centre) running through the myocardium (cardiac muscle, green)

Background imageProteins Collection: Heart muscle, fluorescence micrograph C016 / 8477

Heart muscle, fluorescence micrograph C016 / 8477
Heart muscle. Fluorescence deconvolution micrograph of a section through heart tissue, showing a blood vessel (blue, diagonal, centre) running through the myocardium (cardiac muscle, green)

Background imageProteins Collection: Adrenal gland, fluorescence micrograph C016 / 8472

Adrenal gland, fluorescence micrograph C016 / 8472
Adrenal gland. Fluorescence deconvolution micrograph of a section through an adrenal gland, showing the zona glomerulosa and zona fasciculata

Background imageProteins Collection: Biotin ligase enzyme, molecular model

Biotin ligase enzyme, molecular model. This enzyme is a protein formed from 268 amino acids and two chains (green and pink)

Background imageProteins Collection: B-Z junction in DNA, molecular model

B-Z junction in DNA, molecular model. Deoxyribonucleic acid (DNA) occurs in three forms, A-DNA, B-DNA and Z-DNA. The first two are right-handed, with B-DNA being the more common form

Background imageProteins Collection: Cat allergen protein, molecular model C015 / 3962

Cat allergen protein, molecular model C015 / 3962
Cat allergen protein. Molecular model of the tetrameric form of the major cat allergen fel d 1 (Felis domesticus allergen 1)

Background imageProteins Collection: Bacterial RNA plasmid loop-loop complex

Bacterial RNA plasmid loop-loop complex, molecular model. This strand of ribonucleic acid (RNA) is part of a plasmid, the loop of genetic material found in bacterial cells

Background imageProteins Collection: Cat allergen protein, molecular model

Cat allergen protein, molecular model
Cat allergen protein. Molecular model of the tetrameric form of the major cat allergen fel d 1 (Felis domesticus allergen 1)

Background imageProteins Collection: Methane monooxygenase enzyme

Methane monooxygenase enzyme, molecular model. This is the particulate methane monooxygenase (pMMO) form of this metalloenzyme, an integral membrane protein that contains copper and zinc

Background imageProteins Collection: FP2 malaria protease enzyme complex

FP2 malaria protease enzyme complex, molecular model. This complex consists of the falcipain-2 (FP2) protease enzyme (purple, right) bound to a cystatin (orange, left), a form of protease inhibitor

Background imageProteins Collection: Follicle-stimulating hormone complex C015 / 0945

Follicle-stimulating hormone complex C015 / 0945
Follicle-stimulating hormone (FSH) complex with receptor, molecular model. FSH helps to regulate human sexual development and reproductive processes. In females, it acts on follicles in the ovaries

Background imageProteins Collection: Follicle-stimulating hormone complex C015 / 0944

Follicle-stimulating hormone complex C015 / 0944
Follicle-stimulating hormone (FSH) complex with receptor, molecular model. FSH helps to regulate human sexual development and reproductive processes. In females, it acts on follicles in the ovaries

Background imageProteins Collection: Glutamate transporter protein

Glutamate transporter protein, molecular model. This is a membrane protein that facilitates the uptake of glutamate by a cell, thus playing an important role in neurology in higher organisms

Background imageProteins Collection: Chikungunya virus diffraction pattern

Chikungunya virus diffraction pattern
Chikungunya virus research. X-ray diffraction pattern of proteins from the Chikungunya virus that have been analysed in a synchrotron

Background imageProteins Collection: Felix Rey, French virologist

Felix Rey, French virologist. Rey is director of research on the Chikungunya virus research project at the Pasteur Institute, Paris France

Background imageProteins Collection: Purple bacterium photosynthesis centre

Purple bacterium photosynthesis centre, molecular model. Purple bacteria are phototrophic bacteria that produce energy through photosynthesis

Background imageProteins Collection: Oestrogen related receptor-DNA complex

Oestrogen related receptor-DNA complex. Molecular model of human estrogen related receptor-2 (heRR-2, purple) binding to a strand of DNA (deoxyribonucleic acid, red and yellow-green)

Background imageProteins Collection: Lambda repressor-operator complex

Lambda repressor-operator complex. Molecular model of the lambda repressor protein (red and green) binding to a region of DNA (deoxyribonucleic acid, orange and blue) known as the lambda operator

Background imageProteins Collection: H-NS chromatin-structuring protein

H-NS chromatin-structuring protein. Molecular model of the oligomerization domain of the H-NS protein from the Escherichia coli bacterium. This dimeric molecule folds in on itself, as shown here

Background imageProteins Collection: Chloride ion channel, molecular model

Chloride ion channel, molecular model. This is a ClC ion channel. Its role is to mediate the flow of chloride ions across cell membranes

Background imageProteins Collection: Repair protein and DNA, molecular model

Repair protein and DNA, molecular model
Repair protein and DNA. Molecular model of the Ku heterodimer (grey, blue and purple) bound to a strand of DNA (deoxyribonucleic acid, orange and green) as part of the repair process

Background imageProteins Collection: Max transcription factor-DNA complex

Max transcription factor-DNA complex. Molecular model of the Max transcription factor (purple and red) bound to a strand of DNA (deoxyribonucleic acid, light blue and orange)

Background imageProteins Collection: Antibody fragment-lysozyme complex

Antibody fragment-lysozyme complex
fab d1.3, , chicken egg white lysozyme, protein, biomolecule, macromolecule, lysozyme, enzyme, fab, antigen, antibody, biochemistry, biology, molecular biology, proteomics, artwork, illustration

Background imageProteins Collection: Bacterial regulator-DNA complex

Bacterial regulator-DNA complex. Molecular model of a complex formed between a bacterial regulator called SarA (orange and brown) and a fragment of DNA (pink and yellow-green strands)

Background imageProteins Collection: Bacterial protein-chaperone complex

Bacterial protein-chaperone complex. Molecular model of a bacterial effector protein binding to a chaperone protein that helps prevent keep the bacterial protein in an unfolded or partially folded

Background imageProteins Collection: Hin recombinase-DNA complex

Hin recombinase-DNA complex. Molecular model of the Hin recombinase protein (pink) bound to a double helix (green and orange) strand of DNA (deoxyribonucleic acid)

Background imageProteins Collection: Aedes mosquito and Chikungunya virus

Aedes mosquito and Chikungunya virus. Asian tiger mosquito (Aedes albopictus) mosquito next to a Chikungunya virus particle (virion). The Chikungunya virus is transmitted by Aedes sp

Background imageProteins Collection: Tumour suppressor protein molecular model C016 / 2065

Tumour suppressor protein molecular model C016 / 2065
Tumour suppressor protein. Molecular model of the tumour suppressor protein p53 (left and right) bound to a molecule of DNA (deoxyribonucleic acid, down centre) at the p53 response element



All Professionally Made to Order for Quick Shipping

Proteins: The Building Blocks of Life From the intricate network of nerve and glial cells to the mesmerizing patterns seen under a light micrograph, proteins play an essential role in every aspect of our existence, and are like the conductors of our body's symphony, orchestrating vital processes that keep us alive and functioning. Take, for example, an anaesthetic inhibiting an ion channel C015 / 6718. Proteins act as gatekeepers, controlling what enters or exits our cells. In this case, they regulate the flow of ions necessary for transmitting nerve signals and maintaining proper cell function. But proteins don't just govern our internal workings; they also interact with external threats such as the avian flu virus. These microscopic invaders hijack host cells using their own protein machinery to replicate themselves. Understanding these interactions is crucial in developing effective treatments against viral infections. While some proteins protect us from harm, others contribute to overall well-being through a balanced diet. Our bodies require various types found in different foods to ensure optimal health and nutrition. The secondary structure is truly a work of art—a complex folding pattern that determines their shape and function. Artists have captured this beauty through stunning artwork showcasing these intricate molecular structures. One such structure is the nucleosome molecule—an elegant arrangement where DNA wraps around protein spools called histones—forming compact units within chromosomes. This organization allows efficient storage and retrieval of genetic information during cell division or gene expression. Antibodies are another remarkable class depicted in captivating artwork. These specialized molecules recognize foreign substances like bacteria or viruses and neutralize them by binding tightly to specific targets on their surface—an extraordinary defense mechanism employed by our immune system. Speaking of bacteria, their ribosomes serve as factories producing new proteins based on instructions encoded in DNA—the blueprint for life itself. Understanding bacterial ribosomes has led to groundbreaking discoveries in antibiotic development, combating infectious diseases that threaten human health.