Skip to main content
emoji_people   Now is the perfect time to order your Christmas Prints and Gifts from our collection   card_giftcard
sales@mediastorehouse.com.au
Framed Pictures, Canvas Prints
Posters & Jigsaws since 2004
Home > Science > Space Exploration > Galaxies

Galaxies Gallery

Choose from 146 pictures in our Galaxies collection for your Wall Art or Photo Gift. All professionally made for Quick Shipping.


Behemoth Black Hole Found in an Unlikely Place Featured Galaxies Print

Behemoth Black Hole Found in an Unlikely Place

This computer-simulated image shows a supermassive black hole at the core of a galaxy. The black region in the center represents the black hole's event horizon, where no light can escape the massive object's gravitational grip. The black hole's powerful gravity distorts space around it like a funhouse mirror. Light from background stars is stretched and smeared as the stars skim by the black hole. Credits: NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI) More info: Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe. The observations, made by NASA's Hubble Space Telescope and the Gemini Telescope in Hawaii, may indicate that these monster objects may be more common than once thought. Until now, the biggest supermassive black holes - those roughly 10 billion times the mass of our sun - have been found at the cores of very large galaxies in regions of the universe packed with other large galaxies. In fact, the current record holder tips the scale at 21 billion suns and resides in the crowded Coma galaxy cluster that consists of over 1,000 galaxies

© NASA

International Year of Astronomy 2009 Featured Galaxies Print

International Year of Astronomy 2009

In celebration of the International Year of Astronomy 2009, NASA's Great Observatories -- the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory -- have produced a matched trio of images of the central region of our Milky Way galaxy. Each image shows the telescope's different wavelength view of the galactic center region, illustrating the unique science each observatory conducts. In this spectacular image, observations using infrared light and X-ray light see through the obscuring dust and reveal the intense activity near the galactic core. Note that the center of the galaxy is located within the bright white region to the right of and just below the middle of the image. The entire image width covers about one-half a degree, about the same angular width as the full moon. Spitzer's infrared-light observations provide a detailed and spectacular view of the galactic center region [Figure 1 (top frame of poster)]. The swirling core of our galaxy harbors hundreds of thousands of stars that cannot be seen in visible light. These stars heat the nearby gas and dust. These dusty clouds glow in infrared light and reveal their often dramatic shapes. Some of these clouds harbor stellar nurseries that are forming new generations of stars. Like the downtown of a large city, the center of our galaxy is a crowded, active, and vibrant place. Although best known for its visible-light images, Hubble also observes over a limited range of infrared light [Figure 2 (middle frame of poster)]. The galactic center is marked by the bright patch in the lower right. Along the left side are large arcs of warm gas that have been heated by clusters of bright massive stars. In addition, Hubble uncovered many more massive stars across the region. Winds and radiation from these stars create the complex structures seen in the gas throughout the image.This sweeping panorama is one of the sharpest infrared pictures ever made of the galactic center region. X-rays detected by Chandra expose a wealth of exotic objects and high-energy features [Figure 3 (bottom frame of poster)]. In this image, pink represents lower energy X-rays and blue indicates higher energy. Hundreds of small dots show emission from material around black holes and other dense stellar objects. A supermassive black hole -- some four million times more massive than the Sun -- resides within the bright region in the lower right. The diffuse X-ray light comes from gas heated to millions of degrees by outflows from the supermassive black hole, winds from giant stars, and stellar explosions. This central region is the most energetic place in our galaxy

© NASA/JPL-Caltech/ESA/CXC/STScI

Dark energy and gravity, artwork Featured Galaxies Print

Dark energy and gravity, artwork

Dark energy and gravity. Astronomers think that the expansion of the universe is regulated both by the force of gravity, which acts to slow it down, and a mysterious dark energy, which pushes matter and space apart. Dark energy is thought to be pushing the cosmos apart at faster and faster speeds, causing our universe's expansion to accelerate. Here, dark energy is represented by the purple grid (top) and gravity by the green grid (bottom). Gravity emanates from all matter in the universe, but its effects are localised and drop off quickly over large distances. New research confirms that dark energy is a smooth uniform force that now dominates over the effects of gravity. These observations follow careful measurements of the separations between pairs of

© NASA/SCIENCE PHOTO LIBRARY