Fraud Blocker Skip to main content

Capsid Structure Collection

The capsid structure is a fascinating aspect of viral biology, playing a crucial role in protecting the genetic material and facilitating infection

Background imageCapsid Structure Collection: Adenovirus hexon protein

Adenovirus hexon protein, molecular model. Hexon proteins are part of the protein coat or shell (capsid) of adenoviruses. In viruses

Background imageCapsid Structure Collection: HK97 bacteriophage capsid

HK97 bacteriophage capsid, molecular model. Bacteriophages are viruses that infect bacteria, in this case enterobacteria such as E. coli (Escherichia coli), with the phage head shown here

Background imageCapsid Structure Collection: Chikungunya virus capsid

Chikungunya virus capsid, molecular model. This virus, transmitted by mosquitoes in tropical Africa and Asia, causes fever and joint pain in humans, similar to dengue fever

Background imageCapsid Structure Collection: Turnip yellow mosaic virus capsid

Turnip yellow mosaic virus capsid, molecular model. This virus infects a wide variety of plants, including crops such as turnips and cabbages, causing yellow patches on the leaves

Background imageCapsid Structure Collection: Sindbis virus capsid, molecular model

Sindbis virus capsid, molecular model. This virus, transmitted by mosquitoes, causes sindbis fever in humans. In viruses, the capsid is the protein shell that encloses the genetic material

Background imageCapsid Structure Collection: Murine polyomavirus capsid

Murine polyomavirus capsid, molecular model. This virus, one of a range named for their potential to cause multiple tumours, infects mice

Background imageCapsid Structure Collection: Brome mosaic virus capsid

Brome mosaic virus capsid, molecular model. This plant virus infects grasses, especially brome grasses, and also barley. It causes mosaic patches of discolouration

Background imageCapsid Structure Collection: Cowpea chlorotic mottle virus capsid

Cowpea chlorotic mottle virus capsid, molecular model. This virus (CCMV) infects the cowpea plant (Vigna unguiculata), causing yellow spots of discolouration

Background imageCapsid Structure Collection: Avian polyomavirus capsid

Avian polyomavirus capsid, molecular model. This virus, one of a range named for their potential to cause multiple tumours, infects birds. Discovered in budgerigars in 1981, it is often fatal

Background imageCapsid Structure Collection: Cytoplasmic polyhedrosis virus capsid

Cytoplasmic polyhedrosis virus capsid, molecular model. Part of the Cypovirus genus and invariably fatal, this insect virus is transmitted by contamination of leaves eaten (examples include silkworms)

Background imageCapsid Structure Collection: Theilers encephalomyelitis virus capsid

Theilers encephalomyelitis virus capsid, molecular model. This virus, which causes brain and spinal cord inflammation in mice, is used in research

Background imageCapsid Structure Collection: Tobacco necrosis virus capsid

Tobacco necrosis virus capsid, molecular model. This plant virus infects a wide rage of plants, including the tobacco plant for which it is named. The virus causes tissue death (necrosis)

Background imageCapsid Structure Collection: Grapevine fanleaf virus capsid

Grapevine fanleaf virus capsid, molecular model. This plant virus is named for its infection of grape vines. It is transmitted by the nematode worm Xiphinema index

Background imageCapsid Structure Collection: VEE equine encephalitis virus capsid

VEE equine encephalitis virus capsid
Venezuelan equine encephalitis virus capsid, molecular model. This mosquito-borne virus can kill horses and other equine species, causing brain and spinal cord inflammation

Background imageCapsid Structure Collection: Semliki forest virus capsid F006 / 9297

Semliki forest virus capsid F006 / 9297
Semliki forest virus capsid, molecular model. This virus, named for the forest in Uganda where it was identified, is spread by the bite of mosquitoes. It can infect both humans and animals

Background imageCapsid Structure Collection: Murine minute virus capsid

Murine minute virus capsid, molecular model. This parvovirus infects mice, its only known natural host. It is highly infectious, transmitted through the nose and mouth

Background imageCapsid Structure Collection: SV40 virus capsid, molecular model C018 / 7904

SV40 virus capsid, molecular model C018 / 7904
SV40 virus capsid, molecular model. Simian virus 40 (SV40) is found in monkeys such as Rhesus monkeys and macaques. Potentially tumour-causing, it is used in laboratory research and in vaccines

Background imageCapsid Structure Collection: SV40 virus capsid, molecular model C018 / 7903

SV40 virus capsid, molecular model C018 / 7903
SV40 virus capsid, molecular model. Simian virus 40 (SV40) is found in monkeys such as Rhesus monkeys and macaques. Potentially tumour-causing, it is used in laboratory research and in vaccines

Background imageCapsid Structure Collection: SV40 virus capsid, molecular model

SV40 virus capsid, molecular model. Simian virus 40 (SV40) is found in monkeys such as Rhesus monkeys and macaques. Potentially tumour-causing, it is used in laboratory research and in vaccines

Background imageCapsid Structure Collection: Dengue virus capsid, molecular model

Dengue virus capsid, molecular model. This virus, transmitted by mosquito bites, causes the tropical disease dengue fever in humans

Background imageCapsid Structure Collection: Ryegrass mottle virus capsid

Ryegrass mottle virus capsid, molecular model. This plant virus is named for its infection of ryegrass, and the discolouration it causes

Background imageCapsid Structure Collection: Norwalk virus capsid, molecular model

Norwalk virus capsid, molecular model. This norovirus, which causes a viral form of gastroenteritis, is transmitted from person-to-person or through contaminated food

Background imageCapsid Structure Collection: Semliki forest virus capsid

Semliki forest virus capsid, molecular model. This virus, named for the forest in Uganda where it was identified, is spread by the bite of mosquitoes. It can infect both humans and animals

Background imageCapsid Structure Collection: Physalis mottle virus capsid

Physalis mottle virus capsid
Avian polyomavirus capsid, molecular model. This virus, one of a range named for their potential to cause multiple tumours, infects birds. Discovered in budgerigars in 1981, it is often fatal

Background imageCapsid Structure Collection: Bombyx mori densovirus 1 capsid

Bombyx mori densovirus 1 capsid
Bombyx mori densovirus 1 (BmDNV-1), molecular model. This virus infects crustaceans and insects, especially the silkworm (Bombyx mori)

Background imageCapsid Structure Collection: Hepatitis B virus capsid, molcular model

Hepatitis B virus capsid, molcular model
Hepatitis B virus capsid, molecular model. This virus, transmitted through infected bodily fluids or blood, causes the disease hepatitis B in humans, leading to acute liver inflammation

Background imageCapsid Structure Collection: Simian rotavirus capsid, molecular model

Simian rotavirus capsid, molecular model. This virus is named for its ability to infect the higher primates (simians). Rotaviruses, transmitted by faecal-oral contact

Background imageCapsid Structure Collection: Poliovirus type 3 capsid, molecular model

Poliovirus type 3 capsid, molecular model. This enterovirus causes poliomyelitis (polio) in humans, which affects the nervous system, sometimes leading to paralysis

Background imageCapsid Structure Collection: Infectious bursal disease virus capsid

Infectious bursal disease virus capsid, molecular model. This avian virus infects the bursa of Fabricius (specialised bird immune organ) in young chickens, and can cause high mortality rates

Background imageCapsid Structure Collection: Enterovirus particle C014 / 4900

Enterovirus particle C014 / 4900
Enterovirus particle. Computer artwork of an enterovirus particle (virion), showing the structure of the capsid (outer shell)

Background imageCapsid Structure Collection: Enterovirus capsid proteins structure C014 / 4897

Enterovirus capsid proteins structure C014 / 4897
Enterovirus capsid proteins structure. Computer artwork showing how the four component proteins (VP1 to VP4) of an enterovirus particle (virion) interlock to form the capsid (outer shell)

Background imageCapsid Structure Collection: Enterovirus capsid proteins structure C014 / 4896

Enterovirus capsid proteins structure C014 / 4896
Enterovirus capsid proteins structure. Computer artwork showing how the four component proteins (VP1 to VP4) of an enterovirus particle (virion) interlock to form the capsid (outer shell)

Background imageCapsid Structure Collection: Enterovirus particle C014 / 4898

Enterovirus particle C014 / 4898
Enterovirus particle. Computer artwork of an enterovirus particle (virion), showing the structure of the capsid (outer shell)

Background imageCapsid Structure Collection: Enterovirus particles C014 / 4899

Enterovirus particles C014 / 4899
Enterovirus particles. Computer artwork of enterovirus particles (virion). Enteroviruses are a genus of non-enveloped positive-sense single-stranded RNA viruses associated with several human

Background imageCapsid Structure Collection: Aedes mosquito and Chikungunya virus

Aedes mosquito and Chikungunya virus. Asian tiger mosquito (Aedes albopictus) mosquito next to a Chikungunya virus particle (virion). The Chikungunya virus is transmitted by Aedes sp

Background imageCapsid Structure Collection: Penicillium partitivirus capsid

Penicillium partitivirus capsid, molecular model. This is the capsid of the partivirus called Penicillium stoloniferum virus F (PsV-F). This virus infects the fungi that make the drug penicillin

Background imageCapsid Structure Collection: Echovirus 7 capsid, molecular model

Echovirus 7 capsid, molecular model. Echoviruses are related to the polioviruses. They are usually harmless but can cause serious illness such as encephalitis, meningitis, heart and liver disease

Background imageCapsid Structure Collection: Foot-and-mouth disease virus capsid

Foot-and-mouth disease virus capsid, molecular model. This virus, which can be fatal, causes foot-and-mouth disease in cloven-hooved animals

Background imageCapsid Structure Collection: Poliovirus type 1 capsid, molecular model

Poliovirus type 1 capsid, molecular model. This enterovirus causes poliomyelitis (polio) in humans, which affects the nervous system, sometimes leading to paralysis

Background imageCapsid Structure Collection: IBDV subviral particle, molecular model

IBDV subviral particle, molecular model. IBDV (infectious bursal disease virus) is an avian virus that infects the bursa of Fabricius (specialised bird immune organ) in young chickens

Background imageCapsid Structure Collection: Bluetongue virus capsid

Bluetongue virus capsid
Bluetongue virus (BTV) capsid, molecular model. BTV is an orbivirus, and is of major economic importance as an insect-borne pathogen of cattle and other ruminants

Background imageCapsid Structure Collection: Alpha 3 bacteriophage capsid

Alpha 3 bacteriophage capsid, molecular model. Bacteriophages are viruses that infect bacteria, with the capsid forming the bacteriophage head. A capsid has subunits called capsomeres

Background imageCapsid Structure Collection: Adenovirus penton base protein

Adenovirus penton base protein, molecular model. This protein molecule is a subunit called a penton, forming the vertices of the capsid of this adenovirus



All Professionally Made to Order for Quick Shipping

The capsid structure is a fascinating aspect of viral biology, playing a crucial role in protecting the genetic material and facilitating infection. Various viruses exhibit unique capsid structures, each with its own distinct features. One such example is the Adenovirus hexon protein, which forms the major component of the virus's capsid. Its intricate arrangement allows for efficient packaging of DNA within the virus particle. Another intriguing they are be found in the HK97 bacteriophage. This complex assembly consists of multiple proteins that come together to form an icosahedral shape, providing stability and protection to its genetic material. The Chikungunya virus also possesses a distinctive capsid structure that enables it to invade host cells efficiently. Its spherical shape contains numerous spikes protruding from its surface, aiding in attachment and entry into target cells. Similarly, Turnip yellow mosaic virus showcases a unique architecture with T-shaped protrusions on its surface. These play a vital role in recognizing specific receptors on host cells during infection. The Hepatitis B virus exhibits an icosahedral capsid structure composed of repeating subunits arranged symmetrically around a central axis. This molecular model provides valuable insights into how this virus evades immune responses and persists within infected individuals. Infectious bursal disease virus presents yet another captivating capsid structure characterized by elongated fibers extending from its surface. These fibers aid in receptor recognition and subsequent cell entry during infection. Sindbis virus boasts an elegant molecular model showcasing an icosahedral symmetry with prominent spikes decorating its outer shell. These spikes are essential for binding to host cell receptors and initiating viral replication processes. Murine polyomavirus displays a spherical capsid structure enclosing its genome tightly packed inside. The precise organization of proteins forming this protective shell ensures successful transmission between hosts. Brome mosaic virus exhibits an unusual rod-like morphology consisting of stacked discs forming helical arrays within the viral particle's interior space. This unique capsid structure enables efficient packaging of its RNA genome.