Fraud Blocker Skip to main content

Spacefilled Collection

"Exploring the Vastness of Spacefilled: From Molecules to Medicines" Delving into the intricate world of molecules, we encounter the Cytochrome b5 molecule C015 / 6696

Background imageSpacefilled Collection: RNA-editing enzyme, molecular model

RNA-editing enzyme, molecular model
RNA-editing enzyme. Molecular model of a left-handed, RNA double helix (Z-RNA, centre) bound by the Z alpha domain of the human RNA-editing enzyme ADAR1 (double-stranded RNA adenosine deaminase)

Background imageSpacefilled Collection: Myoglobin molecule C015 / 5702

Myoglobin molecule C015 / 5702
Myoglobin molecule. Computer model showing the structure of a myoglobin molecule. Myoglobin is a protein found in muscle tissue

Background imageSpacefilled Collection: Cytochrome b5 molecule C015 / 6696

Cytochrome b5 molecule C015 / 6696
Cytochrome b5. Molecular model of cytochrome b5 from a cows liver. Cytochrome molecules perform oxidation and reduction reactions for electron transport

Background imageSpacefilled Collection: Z-DNA tetramer molecule C015 / 6557

Z-DNA tetramer molecule C015 / 6557
Z-DNA (deoxyribonucleic acid) tetramer, molecular model. DNA is composed of two strands twisted into a double helix. This is a tetramer of the molecule, containing four strands

Background imageSpacefilled Collection: Rhinovirus and antibody, molecular model C015 / 7139

Rhinovirus and antibody, molecular model C015 / 7139
Rhinovirus. Molecular model of the antigen-binding fragment (Fab) from a strongly neutralising antibody bound to a human rhinovirus 14 (HRV-14) particle

Background imageSpacefilled Collection: Rhinovirus and antibody, molecular model C015 / 7138

Rhinovirus and antibody, molecular model C015 / 7138
Rhinovirus. Molecular model of the antigen-binding fragment (Fab) from a strongly neutralising antibody bound to a human rhinovirus 14 (HRV-14) particle

Background imageSpacefilled Collection: DNA molecule, artwork C017 / 7217

DNA molecule, artwork C017 / 7217
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageSpacefilled Collection: Lysine molecule

Lysine molecule
Lysine, molecular model. Essential alpha-amino acid. Necessary building block for all protein in the body. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageSpacefilled Collection: Adrenaline epinephrine molecule

Adrenaline epinephrine molecule
Adrenaline (epinephrine) is a hormone and a neurotransmitter. It is used to treat a number of conditions like cardiac arrest, anaphylaxis, and superficial bleeding

Background imageSpacefilled Collection: Alanine molecule

Alanine molecule
Alanine, molecular model. Alpha-amino acid that can be synthesised by the body. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageSpacefilled Collection: Leucine molecule

Leucine molecule
Leucine, molecular model. Essential alpha-amino acid contained in eggs, soy protein, seaweed, turkey, chicken, lamb, cheese, and fish

Background imageSpacefilled Collection: Cysteine Molecule

Cysteine Molecule
Cysteine, molecular model. Non-essential alpha-amino acid. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green), nitrogen (blue)

Background imageSpacefilled Collection: Glutamic acid molecule

Glutamic acid molecule
Glutamic acid, molecular model. Non-essential amino-acid. Important neurotransmitter. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageSpacefilled Collection: Glutamine molecule

Glutamine molecule
Proline, molecular model. Non-essential alpha-amino acid, one of the 20 DNA-encoded amino acids. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageSpacefilled Collection: Isoleucine molecule

Isoleucine molecule
Isoleucine, molecular model. Essential alpha-amino acid contained in eggs, soy protein, seaweed, turkey, chicken, lamb, cheese, and fish

Background imageSpacefilled Collection: Gamma-aminobutyric acid GABA molecule

Gamma-aminobutyric acid GABA molecule
Gamma-aminobutyric acid (GABA), molecular model. Main inhibitory neurotransmitter in the central nervous system of mammalians

Background imageSpacefilled Collection: Valine molecule

Valine molecule
Valine, molecular model. Essential alpha-amino acid and one of the 20 proteinogenic amino acids. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageSpacefilled Collection: Phenylalanine molecule

Phenylalanine molecule
Phenylalanine, molecular model. Essential alpha-amino acid, one of the 20 common amino acids used to form proteins. Atoms are represented as spheres and are colour-coded: carbon (grey)

Background imageSpacefilled Collection: Tryptophan molecule

Tryptophan molecule
Tryptophan, molecular model. Essential amino acid and one of the 20 standard amino acids. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageSpacefilled Collection: Methionine molecule

Methionine molecule
Methionine, molecular model. Essential alpha-amino acid. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green), nitrogen (blue), oxygen (red) and sulfur (yellow)

Background imageSpacefilled Collection: TATA box-binding protein complex C014 / 0867

TATA box-binding protein complex C014 / 0867
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, khaki) complexed with a strand of DNA (deoxyribonucleic acid)

Background imageSpacefilled Collection: Tyrosyl-tRNA synthetase molecule

Tyrosyl-tRNA synthetase molecule
Tyrosyl-tRNA synthetase protein molecule. Molecular model showing bacterial tyrosyl-tRNA synthetase complexed with tyrosyl tRNA (transfer ribonucleic acid)

Background imageSpacefilled Collection: ATP synthase molecule C014 / 0880

ATP synthase molecule C014 / 0880
ATP synthase molecule. Molecular model showing the structure of ATP synthase (ATPase) subunit C. ATPase is an important enzyme that provides energy for cells through the synthesis of adenosine

Background imageSpacefilled Collection: Anthrax protective antigen molecule C014 / 0886

Anthrax protective antigen molecule C014 / 0886
Anthrax protective antigen molecule. Computer model showing the structure of a molecule of protective antigen (PA) produced by anthrax (Bacillus anthracis) bacteria

Background imageSpacefilled Collection: HIV enzyme protein, molecular model C014 / 0876

HIV enzyme protein, molecular model C014 / 0876
HIV enzyme protein. Computer model showing the structure of the catalytic domain of a molecule of HIV-1 retroviral integrase (IN) from the human immunodeficiency virus (HIV)

Background imageSpacefilled Collection: Tryptophanyl-tRNA synthetase molecule

Tryptophanyl-tRNA synthetase molecule
Tryptophanyl-tRNA synthetase protein molecule. Molecular model showing human tryptophanyl-tRNA synthetase complexed with tryptophan tRNA (transfer ribonucleic acid)

Background imageSpacefilled Collection: Pho4 transcription factor bound to DNA C014 / 0861

Pho4 transcription factor bound to DNA C014 / 0861
Pho4 transcription factor bound to DNA. Molecular model showing phosphate system positive regulatory protein (Pho4) (blue and green) bound to a strand of DNA (deoxyribonucleic acid, red and purple)

Background imageSpacefilled Collection: HIV enzyme protein, molecular model

HIV enzyme protein, molecular model
HIV enzyme protein. Computer model showing the structure of the catalytic domain of a molecule of HIV-1 retroviral integrase (IN) from the human immunodeficiency virus (HIV)

Background imageSpacefilled Collection: Anthrax protective antigen molecule C014 / 0865

Anthrax protective antigen molecule C014 / 0865
Anthrax protective antigen molecule. Computer model showing the structure of a molecule of protective antigen (PA) produced by anthrax (Bacillus anthracis) bacteria

Background imageSpacefilled Collection: Aspartyl-tRNA synthetase protein molecule

Aspartyl-tRNA synthetase protein molecule. Molecular model showing the structure of the active site of aspartyl-tRNA synthetase (DARS) from yeast

Background imageSpacefilled Collection: Yeast DNA recognition, molecular model F006 / 9282

Yeast DNA recognition, molecular model F006 / 9282
Yeast DNA recognition. Computer model showing a GAL4 transcription activator protein bound to a yeast DNA (deoxyribonucleic acid) molecule (red and blue)

Background imageSpacefilled Collection: Zinc finger bound to DNA

Zinc finger bound to DNA. Molecular model showing a zinc finger molecule bound (orange) to a strand of DNA (deoxyribonucleic acid, pink and green)

Background imageSpacefilled Collection: Psilocybin drug molecule

Psilocybin drug molecule
Psilocybin, molecular model. Naturally occurring psychedelic compound found in psilocybin mushrooms. The effects include euphoria and hallucinations

Background imageSpacefilled Collection: Polyunsaturated fat molecule

Polyunsaturated fat molecule. Computer model showing the structure of three unsaturated fat molecules bound together to form a polyunsaturated fat molecule

Background imageSpacefilled Collection: Ribonuclease bound to angiogenin C015 / 5070

Ribonuclease bound to angiogenin C015 / 5070
Ribonuclease bound to angiogenin. Molecular model of a molecule of human angiogenin bound to a human placental ribonuclease inhibitor molecule



All Professionally Made to Order for Quick Shipping

"Exploring the Vastness of Spacefilled: From Molecules to Medicines" Delving into the intricate world of molecules, we encounter the Cytochrome b5 molecule C015 / 6696, a key player in electron transfer processes within cells. Unraveling the mysteries of DNA structure, we come across the Z-DNA tetramer molecule C015 / 6557, showcasing its unique left-handed helical conformation. Embarking on a psychedelic journey, we discover the Psilocybin drug molecule, known for its mind-altering effects and potential therapeutic applications. Witnessing precision at work, we examine the RNA-editing enzyme molecular model that plays a crucial role in modifying genetic information to ensure cellular functionality. Energizing our bodies from within, we explore the ATPase molecule responsible for powering various cellular processes by converting ATP into ADP and phosphate. Battling against viral invaders, we observe Rhinovirus and antibody molecular models (C015 / 7139 & C015 / 7138) engaged in an intricate dance of recognition and defense. Admiring art imitating life, we marvel at an artwork depicting DNA's elegant double helix structure (C017 / 7217), symbolizing life's blueprint encoded within our genes. Nourishing our bodies with essential building blocks, Valine molecule takes center stage as one of the amino acids vital for protein synthesis and muscle repair. Embracing metabolic pathways with Methionine molecule as our guide; this sulfur-containing amino acid is indispensable for protein synthesis and methylation reactions. Discovering Histidine's multifaceted nature - not only serving as an amino acid but also playing pivotal roles in pH regulation and metal ion coordination within proteins.